

Int. J. Advanced Networking and Applications 1503
Volume:04 Issue:01 Pages:1503-1508 (2012) ISSN : 0975-0290

Accessing a Network using a Secure Android
Application

Padmalatha Ragunathan
Dept of Information Technology, Amrita School of Engineering, Coimbatore, India

Email: padmalatha.ragu@gmail.com

Kishore Sambath
Dept of Information Technology, Amrita School of Engineering, Coimbatore, India

Vishnu Karthik L

Dept of Information Technology, Amrita School of Engineering, Coimbatore, India

---ABSTRACT--
Security plays a vital role in today’s mobile world. There are security issues like sniffing of data while accessing
information through open channel. Proper security measures can help to deal with the common security threats
faced by mobile phone users such as data protection, privacy, application and personal information security.
Cryptographic techniques play an important role in protecting communication links and data, since access to
data can be limited to those who hold the proper key. This paper discusses a method to securely access
information in a network by an android mobile application using AES cryptographic technique. The paper
describes a new key sharing algorithm, based on the symmetric key management, for faster and efficient
encryption of data that is suitable for use in a mobile device.

Keywords – Data security, Data vulnerability, Methods of securing Android application data.
--

Date of Submission: April 10, 2012 Date of Acceptance: May 31, 2012

I. INTRODUCTION

The rapid growth of portable electronic devices with
limited power and memory has opened a vast area of
mobile computing and challenges for implementing
security in such devices which are always connected to the
internet. Smart phones that are powered by either Android
OS, iOS, Web OS, Bada OS, BlackBerry OS or Windows
Phone OS are examples of portable electronic devices that
are becoming an integral part of everyday life.

Android is a privilege-separated operating system, in
which each application runs with a distinct system identity
that helps in identifying and isolating application
resources [1]. This forms the application sandbox.
However, vulnerability exists with many Android devices
that would allow malicious apps to bypass the permissions
request process and tap into user’s personal information,
without the knowledge of the user.

Many encryption algorithms are widely available and
used in information security. They can be categorized into
symmetric (private) and asymmetric (public) key
encryption. In Symmetric keys encryption or secret key
encryption, only one key is used to encrypt and decrypt
data. The key should be distributed before transmission
between entities. Key plays an important role. If weak key
is used in algorithm then everyone may decrypt the data.
Strength of Symmetric key encryption depends on the size
of key used. For the same algorithm, encryption using

longer key is harder to break than the one done using
smaller key. Some examples of such algorithms are RC2,
DES, 3DES, AES, etc. [2]

Asymmetric key encryption or public key encryption is
used to solve the problem of key distribution. In
Asymmetric keys, two keys are used; private and public
keys. Public key is used for encryption and private key is
used for decryption (E.g. RSA and Digital Signatures).
Because users tend to use two key: public key, which is
known to public and private key which is known only to
the user. There is no need for distributing them prior to
transmission. However, public key encryption is based on
mathematical functions, computationally intensive. [2]

The later part of the paper includes as follows: Section
2 formulates the points regarding security in Android
mobile platform. Section 3 presents the importance of
secure apps and the working of our application, which
helps in blocking calls. Section 4 provides the study of
cryptographic algorithms such as RSA, ECC and AES.
This paper describes AES algorithm with a new key
sharing method as an appropriate technique for securely
accessing a network from an Android mobile device.
Section 5 formulates the points regarding AES
implementation details in mobile as well as web modules
of the application with the new key management
algorithm. Section 6 presents the results. Section 7
concludes the paper.

Int. J. Advanced Networking and Applications 1504
Volume:04 Issue:01 Pages:1503-1508 (2012) ISSN : 0975-0290

II. ANDROID MOBILE PLATFORM
Android is a software stack for mobile devices that
includes an operating system, middleware and key
applications. The Android SDK provides the tools and
APIs necessary to develop applications on the Android
platform using the Java programming language.

The main building blocks of Android platform are
device hardware, operating system and application
runtime. The Android application sandbox isolates data
and code execution on a per-application basis [3].
Android application frameworks use robust
implementations of common security functionality such as
cryptography, permissions and secure IPC.

On Android, the Dalvik Virtual Machine is not a
security boundary – the application sandbox is
implemented at the OS level, so Dalvik can interoperate
with native code in the same application without any
security constraints [4]. Thus we concentrate on secure
Android applications.
III. THE SECURE CALL BLOCKER APP

There is limited storage on mobile devices. If any client
using a modular application to retrieve data using dynamic
class loading from sources that are not verified, such as
unsecured network sources or external storage, there are
possibilities that information might include malicious
behavior [5]. There are a few call blocking applications in
android market. Our application, “Brigadier”, is a secure
call blocker application that is used to send, store and
retrieve blacklisted contacts on the server on the internet.

1. Working of the App

• Whenever a call is received, it is first checked to

see if it can be trustable or not.

• All the contacts are trustable along with some
favorite (special) numbers.

• When a call is received from an unknown number,

the app flags the number as untrusted. It then
sends a message to that number with our protocol
(send: details <name> <email>). The caller on
the other hand has to respond to that message
with the protocol.

• The app running at background will constantly

poll to check for messages from the untrusted
numbers. Once it has the details, the user is
prompted to add the number to the trusted list.

• With the details received, optional information can

also be fetched from the social networking sites
such as Facebook.

2. Data connection and security

Once the user installs and registers his details with the
app, login details would be provided. With the account
login, the user can login into the app.

The user can modify the settings on how the

blacklisted number should be handled – whether to block
calls or messages or both. The app is designed in such a
way that the user’s blacklist can be synchronized to the
server securely.

Since the Android mobile devices use limited storage

and the data transfer occurs between server and client
device on the internet, a highly efficient security algorithm
that uses minimal key size than that of conventional
Public Key Cryptographic systems has to be used.

3. Data leak vulnerability

Android is more exposed to vulnerabilities and malware
attacks because of several reasons: the openness of the
platform, multiple OEMs implementing the OS and the
apps in separate ways and lots of application available in
several sources.

Michael Grace, Yajin Zhou, Zhi Wang and Xuxian
Jiang [6] have found that by simply clicking on a link,
Android users may give attackers access to personal
information. If exploited, the vulnerability would allow a
malicious web site to read and upload contents of any file
stored on the phone’s microSD (memory) card.
Information on the memory card could include saved
voicemails, photos or online banking data, etc.

That is, with the ClientLogin protocol, applications
request an authToken from the Google service by sending
an account name and password via a HTTPS connection.
The authToken is valid for up to two weeks and is used
for subsequent requests to the Google service API. If the
authToken is sent over unencrypted HTTP, an attacker
could use network sniffing software, like Wireshark, to
grab it.

Thus our focus is to improve security in Android
mobile devices by developing an application that is secure
and void of any data leak vulnerability.

IV. CRYPTOGRAPHIC ALGORITHMS

Private Key algorithms with high throughput are suitable
for data communication, while public key algorithms with
much lower throughput are suitable for private key
exchange and authentication. Among all available
algorithms, RSA, advanced encryption standard (AES),
and Elliptic Curve Cryptography (ECC) which are
approved by standard organizations are selected for the
study.

Int. J. Advanced Networking and Applications 1505
Volume:04 Issue:01 Pages:1503-1508 (2012) ISSN : 0975-0290

1. Rivest Shamir Adleman cipher
The RSA algorithm is based on the presumed difficulty of
factoring large integers, the factoring problem [7]. Here, a
product of two prime numbers is published along with an
auxiliary value, as the public key. The prime factors must
be kept secret. Anyone can use the public key to encrypt a
message, but only someone with the knowledge of the
prime factors can feasibly decode the message.

1.1 RSA vulnerabilities

• The system (N,D,E) is likely to be insecure if (p-
1), for the p that is one of the factors of N, is a
product of small primes. [8]

• When RSA is implemented with several key pairs,
the implementers often choose to use the same N
for all key pairs, thus saving computation time.
However, since the private and public exponents
together always assist in factoring N, every single
member of the system will be able to factor N
with his key pair and use that result to invert any
public exponent to the corresponding private
exponent. So it is necessary to generate a new N
value for each key pair. [8]

TABLE I

Comparison of Performance Time (milli secs) of RSA and
ECC at clock speed of 400 MHz [10]

System Key
generation

Signature Verification Total
Time

RSA-
1024

2,740.87 66.56 3.86 2,811.2
9

RSA-
2048

26,442.04 440.69 13.45 26,896.
18

ECC-
163

1.47 2.11 4.09 7.67

ECC-
233

3.11 4.03 7.87 15.01

2. Elliptic Curve Cryptography

Elliptic Curve Cryptography is an approach to public key
cryptography based on the algebraic structure of elliptic
curves over finite fields [9]. Its security comes from the
elliptic curve logarithm, which is the Discrete Logarithmic
Problem [12] in a group defined by points on an elliptic
curve over a finite field. This result in a dramatic decrease
in key size needed to achieve the same level of security
offered in conventional Public Key Cryptographic
schemes [10].

Tadeusz Struk [11] has done experiments on mobile
devices with small PC hardware (ARM 32) and concluded

that the operation of ECC is faster, with fewer processor
cycles, than RSA. A faster operation means less heat and
power consumption, longer battery life and small portable
devices that run longer and still being able to provide
equivalent security level. It is also stated that 160-bit key
ECC implementation yields 4 times faster security than
1024-bit key RSA implementation.

Elliptic Curve Cryptography is based on the Discrete
Logarithm Problem [12]. Unfortunately, there are no
known polynomial time algorithms for finding a large
number of points on an arbitrary curve [13]. Thus
implementing the message imbedding technique for ECC
is difficult.

2.1 Advantages
• Decreased key size.
• Better performance in mobile devices than RSA

[10].

2.2 Disadvantage
• Difficulty in message imbedding.

3. Advanced Encryption Standard

Advanced Encryption Standard [14], also known as
Rijndael, is a symmetric block cipher that uses
cryptographic keys of 128, 192 and 256 bits to encrypt
and decrypt data in blocks of 128 bits. It operates on a
4x4 column major order matrix of bytes and most of the
calculations are done in a special finite field.

3.1 Advantages
• Faster than asymmetric key ciphers [15].
• AES 128 bit key usage is faster than ECC 256 bit

key usage [16].

3.2 Disadvantage
• Key exchange problem.

Table I compares the performance time of RSA and

ECC in milliseconds. Table II discusses the NIST
guidelines of equivalent key sizes of ciphers. Table III
shows the number of clock cycles required per cipher.

TABLE II

NIST Guidelines - Equivalent Key Sizes of Cryptographic
Algorithms

ECC Key
Size (Bits)

RSA Key
Size (Bits)

Key Size
Ratio

AES Key
Size (Bits)

163 1024 1 : 6

256 3072 1 : 12 128

384 7680 1 : 20 192

512 15360 1 : 30 256

TABLE III

Int. J. Advanced Networking and Applications 1506
Volume:04 Issue:01 Pages:1503-1508 (2012) ISSN : 0975-0290

No. of Clock Cycles Required Per Algorithm

Algorithm Encryption Decryption

AES 951 2036

ECC-163 3,414,850

If key exchange problem could be overcome in AES,
then implementation of AES would yield higher security
than that of ECC or RSA.

Fig. 1 AES block diagram

V. IMPLEMENTATION DETAILS

This section highlights the implementation techniques
used in building the application. For our experiment, we
use a notebook with Intel Core i5-2410M CPU @
2.30GHz for running the server locally and HTC Wildfire

having Android Froyo 2.2.1with ARM 11 CPU @ 528
MHz. Since we are concerned with mobile devices with
limited storage and processing speeds, we have chosen
AES with a new key sharing technique for computational
efficiency.

To secure our Android app, “Brigadier”, all data
connections and data transfers from and to the client
application, to and from the server has to be authenticated,
encrypted when sent and decrypted when received using
the AES algorithm that takes care of the key exchange
problem. The app will help in blocking calls and messages
from untrusted contacts stored as blacklists in the client
application which are synchronized to the user’s account
in the server.

For the AES algorithm, the length of the input block,
the output block and the state is 128 bits. This is
represented by Nb = 4, which reflects the number of 32-bit
words. The length of the cipher key, K, is 128 bits which
is represented by Nk = 4. The number of rounds to be
performed during the execution of the algorithm is
dependent on the key size which is represented by Nr =
10.

The block diagram of the cipher is described in the
Fig. 1. The AES algorithm takes the cipher key, K, and
performs a key expansion routine to generate a key
schedule. The cipher transformations can be inverted and
then implemented in reverse order to produce a straight
forward inverse cipher for AES algorithm. The individual
transformations used in the inverse cipher – InvShiftRows
(), InvSubBytes (), InvMixColumns () and
AddRoundKey (). Fig. 2 describes the data flow diagram
for “Brigadier”. The user data includes the blacklisted
contacts which includes a name and a number.

1. Key sharing algorithm

The mobile app and the server will already have a key,
KEM, is 128 bits which is hardcoded. For the
authentication of the user, MD5 hashing technique is used
which is of length 128 bits. The hashed password of the
user (application) is represented as KP.

In order to generate round keys for the AES technique,
an initial key, KI, has to be obtained. This is key can be
formed by XOR-ing the even bits of the hashed key, KP,
with the embedded key, KEM. Equation (1) represents the
same.

: KI = KP (even bits) KEM (1)

Thus KI is the 128 bits symmetric key for that user. So
every user would generate his secret key only at the
runtime. The key is not stored anywhere. The XOR-ing
provides randomness to the static embedded key, KEM.

Add Round Key

Byte Sub

Shift Row

Mix Column

Add Round Key

Byte Sub

Shift Row

Add Round Key

Data In 128

K0

128

128

128

K1

Kn

1st Round

Final Round

Data Out 128

Int. J. Advanced Networking and Applications 1507
Volume:04 Issue:01 Pages:1503-1508 (2012) ISSN : 0975-0290

Fig. 2 Data flow diagram for Brigadier

VI. RESULTS

The Android call blocker application, “Brigadier”, is
implemented using Android SDK in Eclipse IDE and
requires Android version 2.2, Froyo, and up. It is found
that security of the transmission data (blacklisted contacts)
is ensured by implementing MD5 – 128 bits hashing for
authentication, a faster yet efficient algorithm, AES, for
cryptographic encryption and decryption using 128 bits
key and the new key sharing algorithm. Every user has a
unique key generated at runtime which is not stored

anywhere. A secure web based client engine is also
implemented and hosted in the internet. From the
implemented experimental result, the time required in
milli seconds in various stages (i.e. key generation,
encryption, decryption and total time) of ECC, RSA and
AES with our new key management algorithm is shown in
Fig. 3.

Fig. 3 Comparison of cryptographic algorithms (time in
milli seconds)

VII. CONCLUSION

This paper presents a design of a cryptographic technique
for accessing a network using a secure Android
application. We achieved this by expressing the
importance of a faster yet efficient algorithm, AES, for
security in mobile devices in terms of simple logical
operations that maximize efficiency in using less
processing cycles, power and memory used. Further
improvements can be done by implementing larger key
lengths of AES technique with modifications to lower
processing cycles that may ensure consumption of
minimum battery power.

REFERENCES

[1] Google Inc., Android security overview
http://source.android.com/tech/security/index.html

[2] D.S. Abdul Elminaam, H.M. Abdul Kader, M.
Mohamed Hadhoud, Performance Evaluation of
Symmetric Encryption Algorithms, International
Journal of Computer Science and Network Security,
8(12), 2008.

[3] Goolge Inc, Designing for security
http://developer.android.com/guide/practices/security.
html

[4] Google Inc, Security Architecture
http://developer.android.com/guide/topics/security/se
curity.html

Registered
User

Server

User Hash

Username

Hash of the
 Password

 Searches
User record

Login Success

Fetch data of the user
Search and retrieve user data

Convert into JSON format

Get KP of the user

XOR even bits of KP with KEM

AES Encryption

Send encrypted data

XOR even bits of KP with KEM

AES Decryption

Parse JSON

Obtain actual data

Int. J. Advanced Networking and Applications 1508
Volume:04 Issue:01 Pages:1503-1508 (2012) ISSN : 0975-0290

[5] W. Enck, M. Ongtang and P. McDaniel,
Understanding Android security, Pennsylvania State
University.

[6] M. Grace, Y. Zhou, Z. Wang and X. Jiang, Data
Leak Vulnerability haunts Android, North Carolina
State University.
fchttp://web.ncsu.edu/abstract/technology/haunted-
android/

[7] DI Management Services, Australia. RSA Algorithm
http://www.di-mgt.com.au/rsa_alg.html/

[8] Y. Kumar, R. Munjal and H. Sharma, Comparison of
Symmetric and Asymmetric Cryptography with
existing vulenerabilities and counter measures,
International Journal of Computer Science and
Management Studies, 11(03), Oct 2011.

[9] N. Kobiltz, Elliptic Curve Cryptosystems,
Mathematics of computation,48(177), January 1987,
pages 203-209.

[10] W. Chou, Elliptic curve cryptography and its
applications to mobile devices, University of
Maryland, College Park. Advisor: Dr. L. Washington,
Department of Mathematics.

[11] T. Struk, Elliptic Curve Cryptography as a suitable
solution for mobile devices, National University of
Ireland, Galway. Advisor: Dr. M. Schukat. Mail:
tstruk@gmail.com

[12] D. Hankerson, Dept of Mathematics, Auburn
University., S. Vanstone and A. Menezes, Dept of
Combinatorics and Optimization, University of
Waterloo., Guide to Elliptic Curve Cryptography,
Springer Publication.

[13] Padma Bh, D. Chandravathi, Asst. Prof, Dept of
MCA, GVP College, Vishakapatnam., and P.
Prapoorna Roja, Prof, SSN College of Engineering,
Dept of IT, Chennai, Encoding and decoding of a
message in the implementation of Elliptic Curve
Cryptography using Koblitz’s method.

[14] Federal Information, Processing Standards
Publication 197.

[15] K. Kenan, Securing databases with cryptography
http://www.informit.com/articles/article.aspx?p=4237
71&seqNum=2

[16] Prof. X. Deng and Dr. Duncan S Wong, Elliptic
Curve Scalar Multiplier (ECSM) IP core, City
University of Hongkong.
http://www.cs.cityu.edu.hk/~ecc

